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REPORT No. 323

FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

IN FIVE PARTS
By A. F. ZauMm

SUMMARY

This report, submitted to the National Advisory Committee for Aeronautics for publication, is
a slightly revised form of U. 8. Navy Aerodynamical Laboratory Report No. 380, completed for the
Bureau of Aeronautics in November, 1928. The diagrams and tables were prepared by Mr. F. A.
Louden; the measurements given in Tables 9 to 11 were made for this paper by Mr. R. H. Smith,
both members of the Aeronautics Staff.

Part I gives a general method for finding the steady-flow velocity relative to a body in plane
curvilinear motion, whence the pressure is found by Bernoulli's energy principle. Integration of
the pressure supplies basic formulas for the zonal forces and moments on the revolving body.

Part II, applying this steady-flow method, finds the velocity and pressure at all points of the
flow inside and outside an ellipsoid and some of its limiting forms, and graphs those quantities for
the latter forms. In some wuseful cases experimental pressures are plotted for comparison with
theoretical. '

Part 111 finds the pressure, and thence the zonal force and moment, on hulls in plane curvi-
linear flight.

Part IV derives general equations for the resultant fluid forces and moments on trisymmetrical
bodies moving through a perfect fluid, and in some cases compares the moment values with those
found for bodies moving in air.

Part V furnishes ready formulas for potential coefficients and inertia coefficients for an ellipsoid
and its limiting forms. Thence are derived tables giving numerical values of those coefficients for
a comprehensive range of shapes.

199



200

REPORT No. 323

FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

PART L

INTRODUCTION

STEADY-FLOW METHOD.—In some few known cases one can compute the absolute particle
velocity ¢’ at any point (z, y, 2) of the flow caused by the rotation of a body, say with uniform
angular speed £, in an infinite inviscid liquid otherwise still. Thence, since ¢’ is unsteady at
[x, ¥, 2), the instantaneous pressure there is found by Kelvin’s formula p,/p= —0¢/0t—¢'%2, p,
being the supervacuo pressure there, and ¢ the velocity potential.

Otherwise superposing upon said body and flow field the reverse speed — @, about the same
axis, gives the same relative velocity ¢ but which now is everywhere a steady space velocity.
In the body’s absence the circular flow speed at the radial distance R would be ¢,=—aR! 1If
the fixed body’s presence lowers the speed at (x, ¥, z) from ¢, to g, it obviously begets there the
superstream pressure

The present text finds p by this steady-flow method only, and applies it to streams about various
forms of the ellipsoid and its derivatives.
The superposed circular flow, ¢y = —QR = — ¢, 0R, has the stream-function

¢=%52R2 ___________________________________ (23
which, for rotation about the z axis, plots as in Figure 4. This flow has no velocity potentiul,
since Oy /OR #0.

GeNERAL FormuLas For VELociTy CoMmroNENTs.—In plane flow,® as is known, a particle
at any point (z, ¥) of a line s drawn in the fluid has the tangential and normal velocity con-
ponents

_Op_ Y _O0p 0¥
4= 2~ "on P onTos ! ’

1 This velocity entails the centrifugal pressure p.=p2RY2 at all distances, R= v r?+y? from the rotation axis of the circular stream, here assumed
to be constrained by a coaxial closed cylinder infinitely large. To the dynamic pressure p.+p may also be added any arbitrary static pressure
such as that due to weight or other impressed force.

1 At any surface point of the body ¢ is the velocity of wash or slip, whether the body moves or not; it is gt—g’’s, the difference of the tangential
space velocities of the fluid and surface point. If the body is fixed ¢” (=0, g=¢":.

1 Plane flow, viz two-dimensional flow, literally means flow in a plane; the term applies also to space flow that is the same in all parallel plunes.
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where 8s, on are elements along the line and its normal. As usual, ¢,, ¢ are reckoned positive

respectively along és, én positive; e. g. Figure 2. The components along z, y are

d¢_OY

_Oyp_0y _O¢_ _O¥
Y=oz dy

Py~ "ozttt (4)

In solid flow (3), (4) still hold for ¢, and further w=0¢/0z. In
general, ?=w*+ ' +w'=¢l+¢.’. Atany point of a surface drawn in the
fluid ¢, is taken in the plane of ¢ and ¢a. All these velocities are referred
to fixed space.

SurrFace VELociTY.—A fixed body in any stream, since ¢,=0, has
the surface flow velocity ¢ =g, which put in (1) determines the surface
pressure.

At any surface point of an immersed moving body ¢, is the same for
body and fluid, hence is known from solid kinematics. Thus, if the body
is any cylinder rotating as in Figure 1,

gn=—9QR dR/ds=QR sin (§—-8)= Qhy=Qmx—ly)- - __. (5)

where the symbols are as defined in Figures 1, 2.
More generally, for any surface with velocities Q;, 2,, & about the
axesz, ¥, 2,

gn=(y—m2)Q+ lz—ne)Q,+ (me =1y - oo (6)

9
Yy

A 2,

h;

FIGURE 1.—Component veloci
ties gn, g: of surface point of
any rigid cylinder having an-
gular speed 2 about any axis
parallel to its length. gn=
Qhy; ge=Qhs. h=R sin (6—
8)=—R dR/ds=mzi—ly, 1, m
being direction cosines of the
normal to the contour slement
dsat (z,y). Ifthebody rotates
in 8 fluid, ga=0¢/0s=0¢/0n.
At any surface point ¢~ is the
same for hody and fluid; ¢
different except at points of no

. . . . slippage
where [, m, n are the direction cosines of the surface normal, as in (13,).

If at the same time the body has translation components, U, V, W along x, y, 2, (6) must be
increased by IU+mV+n W, giving

Q=0T +:0,—y)+ m(V+zQ,—20,) +a(W+yQ,—z2,) .- (7)

But (5), (6), (7) express ¢, only at the model’s surface.
Equations (1) to (7) obtain whether the fluid is inside or out-
side the body.
ZoxaL Forces axp MoMmeNnTs.—For any cylinder spinning
about z, as in Figure 1 or 5, surface integration of p gives, per
unit of z-wise length, the zonal* forces and moment, respectively,

X=Spdy Y=/pdx N=JSprdr ___. (8)

where p dy, p dx are the r, y components of the elementary
ellipses. ’:}" cos q=r cos ﬂ;}‘=°' sn  gurface force p ds, and r is the radius vector of (z, %). To derive
w=rsin §; &7 tan 6=tan 1=f; a0 f= N we note that p ds has components p r dB, p dr along and across
r. Having no moment, p 7 d8 can be ignored, leaving only p
dr with arm r. Thus, 2N= /p d(r*), which varies as the area of
the graph of p versus %
A surface of rotation about z, spinning about its z axis, has zonal forces

X=/Spdydz Y=SSpdede. - 9)

¢A zone is auny part of the surface bounded by two parallel planes; in this text they are assumed normal to z, and the zone has the bounding
planes z=0, z==11; in Part III other planes are used; . g. Z=15. I=0.

FIGURE 2.—Ceometric data for conflocal

E'b—l, %? hi=r sin (8—8); ha=r cos (6—5).

[=ae=a’ ¢, ¢=+/1-—b%a? being eccen-
tricity of ab
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If ds,, ds. are elements of its lines of meridian and latitude, as in Figure 3, the moment about
z of p ds, ds., is p r dr ds. in the plane w=0, and p r dr dsw cos w=p r dr dz=dN for any
meridian plane; hence the zonal moment is

N=SPrdr__. . (10)
where P=fzu p dz=dY/dz, is the y-wise pressure-force per unit length z-wise.® Thus, as for

(8), N varies as the area of the graph of P versus 7. Also one notes that

2r

Y= /Pdz P=z , Peose deo . (10,)

Since p is symmetrical about the x axis, Z=0=Y=L= M= N, viz, the assumed zone is
not urged along y, z or about x, y, z. In general, X is not zero for such a zone, but is zero for
the whole model. The zonal Y, N are zero for steady
y rotation about z in a {rictionless liquid, because p Ix
b symmetrical about the x axis; but are not so in a viscid
fluid, nor for accelerated spin in a perfect fluid.
For trisymmetrical surfaces we note also: If the
‘ zones were formed by planes normal to z, zonal X
v NS would be zero for motion about z; zonal & in general
74y not zero; e. g., for a viscid fluid. Sumnilarly for zones
, - with faces normal to y.
//’ 1 By (10) the bending moment about the z ordinate
z

&9

1]
in the plane y=0is f P r dr. This is zero for a fric-

r

tionless liquid; for a viscid fluid it increases with length
of zone.

FIGURE 3.—Geometric data for prolate spheroid. z=a cos In addition to the pressure forces and moments just
m ”"”5‘“"""3“’? sinf cosw; 2=bsin y sin w=r sit gonsidered, due to rotation about z, a viscid fluid exerts
8 sin w; R=+11+y* & n is positive outward; & 87, Lo R . .

53, positive as indicated by arrows; zo=yo=b Sin 7 surface friction symmetrical about the z axis, but not
treated here.

For any surface S, clearly (9) still holds and (10) can be generalized to the usual form
N=SSpade—ydy)da. .. (102)

GEOMETRICAL ForMruLAs.—Most of the surfaces treated in this text are members of the

confocal ellipsoid family
22 9y R T
dFATEERN T AT T Tt

whose semi axes are a’ = ya?+ \, etc. The following known properties are needed.
The distance from the center to the tangent plane at the point (z, , 2) of a’b’c’ is

xz? 2 2\~
h2=<air+b?{4+*c77) ----------------------------- (12)
The direction-cosines of the normal to said plane are
h k
l) m, n=a—2132;’ ;BI%’ C_":i ———————————————————————————— (13)

3 The radius of the latitude circle is denoted by zo=yo.
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The partial derivatives of X are

N

oA
a—x‘—{_)l}lg =

o O\ O\
oy

mh2 a‘é=2nh2 4=2h2 ———————————————— (14)

More generally for any surface f(z, ¥, 2) =0, one knows

A A S [ CART CA R €A I 1

and the distance from the origin to the tangent plane at (z, y, 2) is
ho=lx+my+mz=7 COS Yo u oo (12)

+ being the angle between the radius vector r and the normal.

Coxventions.—In all the text z, ¥, z have the positive directions shown in Figure 3,
as also have the z, ¥, z com- y
ponents of velocity, accelera-
tion, force, linear momentum.
The angular components
about z, y, z of velocity, ac-
celeration, moment, momen-
tum are positive in the re-
spective directions y to z, z
to v,  to . The positive
direction of a plane closed
contour § is that followed
by one going round it with
the inclosure on his left, as
in Figure 2; the positive
direction of the normal =
is from left to right across s;
and 8s, én determine the positive directions of the tangential and normal flow velocities ¢,
q. as previously stated. For a closed surface on is positive outward and ds is positive
in the direction of one walking on the outer surface with n on his left.

The word “displaced fluid,” used in treating the motion of a submerged body, usually
means fluid that would just replace the body if the latter were removed.

X

FIGURE 4.—Streamlines for '#-—217 2 R3, with increments ‘A ¢ =.2, for fluid rotating with uniform
angular velocity 0=—1
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

PART I

VELOCITY AND PRESSURE

(A) BODIES IN SIMPLE ROTATION

Ervreric CyLinper.—For an endless elliptic cylinder, of semiaxes ¢, b, ¢ (= «), rotating
about ¢ with angular speed . in an infinite inviscid liquid, otherwise still, one knows '

. 1
p=—m' Qay= —%m’,ﬂca’b’ sin 279 = —Em’cﬂca’b’ COS 2n_ oo (15)

y

x

FiGURE 5.—Streamlines for endless elliptic cylinder rotating about its long axis with uniform angular velocity £; shows w-—é m'.Qa’ b
1 at—b?

cog 2n with increments A ¢ =.2, =1, For inside fluid, ¢ = 7 otk Q (22—y?
the geometric symbols being as in Figure 2. For any outer confocal a’d’ the potential coefficient
has the constant value

m',=(a+b)*a —b)2ab (@ +b") ... (16)?

On the model’s surface @’ =a, b’ =b; m’,= (a®—b?)/2ab.

The equipotential lines on either surface ab or a’b’ are its intersections with the corre-
sponding family of hyperbolic cylinders xy= —¢/m’ Q=const. Normal to the equipotentials
are the streamlines ¢ = const. Graphs for ¢ =0, 0.2, 0.4, etc., are shown in Figure 5 for a model
having e/b=4. They are instantaneous streamlines, and form with the model a constant
pattern in uniform rotation about ¢ in said infinite liquid.

At any outer confocal a’b’ the velocity components are, if k=m’.a’d’'Q,,

, d -

d .
q,=5~-=—xcos2n£ ¢ n=73 =K sin 29 d—;’——q’, tan 29 __________ (17)

1 Proofs of (15), (23), (20), (40) are found in books; e. g., Lamb §§ 72, 108, 110, 115, 5th ed., except that Lamb reverses the sign of ¢, v.
¢

p ¢l+‘/;".',x)' X . s e ; {4
- — -1 ¢, ¢ being the eccentricities of ab, a’b’. On ab this becomes m'c=e¥/1—el. See (39
T ekvimer) ag1ma’ @0 O ¢ o s Beco =l @

for the six potential coefficients ma, ms, M, ™'y, m's, Mm’c, in the value of ¢ for more general motion.

1 Equivalent to (16} is m’.=
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where dn/ds=1/a’ /1 —e’? cos?y, as one easily finds. Alternative to (17) are
) d
9= m"chéxy= —m’ Q. cos (6+8) ¢a=—q¢ tan2n__ ________ (17,)

Thus for n=0, 45°, 90° (17) and (17,) give ¢’,/Q.= —m’.a’, o, m’b’. At the model’s surface,
where m’ .= (@®*— b*)/2ab, (17,) become

2
’ @

— A2
Q== '?zbi Q.r cos (8+8) ¢ a=Qrsin 0—3)_ .. __________ (172)

the latter being 2,2, as in (5).
Where ¢’,=0, or cos n= l/w/f, viz, at the stream poles, clearly z=a’/v2, Z/:b'/\/i
=yt =atet e (18)

a rectangular hyperbola. (18) is the instantaneous polar streamline, e. g., Figure 5, orthogonal
to all the confocal ellipses. Its asymptotes are y= +x; its vertices are at z= =ae/v2; it cuts
cach ellipse where xfy=a’/b’, viz, on the diagonals of the circumscribed rectangle. For an
endless thin plate of width 2a the poles are at y=0, x= +a/v/2.

Superposing — £, on the body and fluid, and using (2), changes (15) to

Y=g (P —m’ @’V 08 W) oo (19)

Its graph, with A¢=0.2, gives the streamlines in Figure 6 for the flow 2,= —1 round a fixed

cylinder having a/b=4. About the point (0, 1.45) in Figure 6, is a whirl separated from the

outer flow by the streamline ¥ =4.25. This line abuts on the model at the inflow points 1, 7;

spreads round it and emerges at the outflow points 0, 0.2 The streamlines for an endless thin

rectangle having =0, e =1, are similar to those of Figure 6, but infinitely crowded at the edges.
The superposed particle velocity — Q.7 contributes to (17,)

¢’ =—Qrcos (0—B)=—hQ ¢ a=—Qrsin (0-B)=—hQ. ... (20)

also ¢’ ,=¢"’,tan (6—B). Adding (17,) and (20) gives the components ¢, = ¢’ .+ ¢4, ¢, =q n + ¢ 1,
of the resultant flow velocity at any field point. One notes that (20) are the reverse of ¢,, ¢,
in Figure 1.

In particular ¢, =0 on the fixed model and @, y axes; hence there

qlaQ,. = —g[m’c cos (8+ B8) +cos (68— B)] q/go=m' . cos (+8)+cos (6—B)____. (21)

Thus ¢/go=1+m’, on the z axis; 1—m’, on the y axis; and 1 at « where m’,=0. The dashed
line in Figure 6 gives ¢/aQ.= — (1 —m’ )y/a for points on the y axis; it crosses y at the whirl
center where ¢=0, viz, where m’,=1. By (16) m’.=1 for the surface of any model having
@b=1++/2; and there is no whirl if a/b<1++/2. Figure 7 shows ¢/aQ, for the surface of a
model having a/b=4, m’ .= (a’—b%)/2ab=15/8.

Putting ¢/¢% of (21) in (1,), where r*/a’=cos’n/cos’B, gives

p/% pa?Q?, = (1—[m’, cos (8+B)+cos (8—B)]*) cos? njcos* B_ - -_.__(22)

which is graphed in Figure 7 for a model having a/b=4.
integrating p/%paﬂﬂ?c, as in (8), gives for an inviscid liquid ¥Y=0=XN; X»0. Figure 7

delincates X for this case.

The points {, 0 are identical with those in Figure 5; viz, where the slip speed g in (21) is zero; they are called stop points, stagnation points, etc.
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For the surface of an endless flat plate (=0, c= =) fixed in the stream —Q,, clearly
m'.=a/2b and generally r cos (§—8) =0; hence (21) gives -

q/afl, = _é‘b cos (f+B)=-—sinfcospcot 29 _____________._ (21,)

which equals — =, 0, 1/2 for p=0°, 45°, 90°. The flow resembles that in Figure 6; it has

twin whirls abreast its middle, stop points at z= = a/+/2, and infinite velocity at the edges.
Putting in (1,) r=z and ¢,= —zQ, gives the plate’s surface pressure

x? g

1
1o 2T
i 2P(l Qc a? aZch

2
=(1—-cot? 29) cost n____________________ (22)

FIGURE 6.--Streamlines about endless elliptic cylinder fixed in infinite inviscid liquid rotating about its Jong axis with uniform angular speed—.);

shows ¢-% Q (r1—m’s @’ b’ cos 2n) with increments A ¢ =1, @=—1. Dotted line portrays z-wise speed on y axis
which equals —1/4, 1/2, — o forz=0, ta/+/2, £a; viz, for n=90°, 45°, 0, etc.

ProLaTE SpHEROID.—For a prolate spheroid, of semiaxes @, b, ¢, rotating about ¢ with
speed Q. in an infinite inviscid liquid,

p=—m' Qay= —%m"ﬂca’b’ SIN 2 NCOS wom oo .. (23)
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the geometric symbols being as in Figure 3. For any outer confocal spheroid a’d’c’ (23) has
the known constant potential coefficient

3 ] ,1+,,ef__3_,,,e,’i,
, 2¢’ 08 1 ¢ 1—¢" ,
m= 3 . 1-+e e2 €€ .. (24)
pe 2= logy—6+, ",

e, ¢’ being the eccentricities of ab, a’b’. Table IV gives surface values of m’, for various shapes
of prolate spheroid.
In the yz, zz planes ¢=0; in the xy plane, where cos w=1

o= -——é—m’cﬂca'b’ sin 27n Y= ~—12-m’59ca’b’ oS 2y . ___.__ (23))

which, except for m’,, have the same values as (15), entailing the same polar streamlines (18).

The equipotentials on a’b’c’ are its intersections with the family zy = — ¢/m’ Q. = const.
At any point (z, y, 2) on a’d’c’ the orthogonal velocity components are by (23)
, _Opde , _Opdyp ; _Qp dw .
Tn= ¢ dn T2 2y ds, Co=dpds, """ e (25)

on, 8s,, 8s, denoting line elements along the normal, meridian, and circle of latitude, as in
Figure 3. Since ¢’, is absent from (1), we shall not need it; we merely note that on the model’s
surface it is 7Q, sin (6—3) cos w. By geometry dn/ds,=r cos 0+8)/a’b" cos 27, dwids,=
1/5' sin 5, hence

q¢y=—m'Qr cos (6+8) cos w ¢o=m' QrcosBsinw.__________ (25,3
For w=0, ¢’ (=¢’y) differs only by m’, from (17,) for an elliptic cylinder; also r cos g==z ..
g’o=m’ 2, sin w=0, m’ x2Q, for w=0, r/2.

Superposing — Q. on the above system adds to (25,), as easily appears

¢ n=—Qrsin (8—B) cos w qy=—Qrcos (0—B)cosw  ¢",=Qr cos B sin w___(26)

At the now fixed surface and on the x, y axes ¢,=0=¢’,+¢"’,; hence summing (25,), (26)
gives there
4= —[m’; cos (8+B) +cos (8 - B)] Q. c03 W=7, cos w
o= (1+m')Q.r cos Bsin w=7q, sin w

__________________ 27

Thus for w=0 clearly ¢/go=m’, cos (8+8) +cos (§— ), differing from (21) only by m’,; for
w=7/2,q/¢o= ~ (L+m’,), a formula like that for a negative flow g, across a cylinder; for w=10°,

90°, 45°, ¢=17,, 'q—,,,\/% (¢%+¢%). On the x axis ¢/go=1+m’,; on the Y axis ¢fgo=1—m'.>0

everywhere, hence no whirl centers on y.

Figure 8 shows [g/aQ.| on the meridians w=0, =45°, =90° of a fixed spheroid with a,/b =4.
Distributions symmetrical with these occur on the opposite half of the surface. Noteworthy
is ¢ for w=£90°. By (27) it is ¢= £ (1 + m’ )Qx; hence the straight-line graph in Figure ».

Figure 8 shows also, for these meridians, the pressure computed with the working formula,
derived from (1,), (27).

,lmp =4 costw+Bsintw. o .. 128}

§Pa/292c

d a 1 ., . . d . . dn . . , _9e
+E. g., by (23) aa;,z”-ai,,. 7“6 8in 29 cos w; viz, ¥ cos (9+8)=a't’ cos 29 a—}n: which gives (Fr; in (25). Also directly ¢ ,;-(;"-

-m’e g‘di IY=—m":5.r co8 (8+8) cos w.
oy
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where A= (1—[m’, cos (8+B)+cos (8—B)]*) cos’n/cos*B, B=—m' (2+m',) cos?y. Here m',
.689 by Table IV. The crosses and circles, giving experimental values taken from Reference 3,
show good agreement with (28) for a considerable part of the surface. For cos w=0, pxX By
or the graph is parabolic.

Integrating p, as in (9), (10), gives for an inviscid liquid ¥ =0= N, X»#0. Figure8 portrays
X computed from theory and experiment.

Evvirsoin.—For an ellipsoid, of semiaxes a, b, : along , ¥, 2, rotating about ¢ with speed
2. in an infinite inviseid liquid, otherwise still,

which for any outer confocal ellipsoid a’b’c’, has the constant potential coefficient

_bZ

m' ;= C0(B—a) 0=2(a§; b2 — (a2 +b%)(Bo—ag)~ """ Tt (30)

the Greek letters being as in Part V. Surface values of m’, are listed in Table IV.

By (29) the equipotential lines on a’d’¢’ are its intersections with the hyperbolic cylinder
family 2y = — ¢/m’ Q2.=const. The orthogonals to ¢ const. at the surface a’b’c’ are the stream-
lines there. These by (31) are parallel to x where z=0; parallel to y where y=0; normal to
z where z=0. The same obviously holds for spheroids and other ellipsoidal forms.

In the zy plane the flow has the polar streamlines (18); also it has there

o= —}Q—m'cﬂca’b’ sin 27 y= ~%m’69ca’b’ oS 2y o ____ (29,)

whence the streamlines in that plane are plotted. The form of (29,) is like those of (15) and
(23,), for the elliptic cylinder and prolate spheroid, entailing similar expressions for the velocity
and pressure in the plane-flow field z=0.

For the general flow the velocity components at a’d’c’ are by (29)

. bﬁf ,_H( om’, ,> _ om’,
u = Sz +m’ ) Y v = Y oy +m'. )Qx Qxy 3z N 3 )
and those due to the superposed velocity —Q.R=g¢,, are
=0y Vi=—-Qx w'=0____ . ______.. (32)

whence the resultant velocity and pressure may be derived for all points of the flow field about
the ellipsoid fixed in the steady stream —Q.R. In forming the z, ¥, z derivatives of m’, one
may use the relations (14) and (72).
Everywhere in the planes =0, y=0, the resultant velocities are respectively, by (31)
and (32),
g=u=(1—-m',)2y g=v=—1+m')Qx_ ... . (33)

while in the plane z=0, ¢ can be found as indicated for an elliptic cylinder. (33) apply also
to the elliptic cylinder and prolate spheroid previously treated, and to all other forms of the
ellipsoid fixed in the flow —Q..

(B) BODIES IN COMBINED TRANSLATION AND ROTATION

Most GeNERAL MotioNn.—The most general motion of any body through a fluid may
have the components U, V, W along, and 2, @, 2. about, three axes, say a, b, c. The entailed
resultant particle velocity ¢’ at any flow point is found by compounding there the individual
velocities severally due to U, V, W, Q,, @, Q., and computable for an ellipsoid by formulas in
Reference 2 and the foregoing text.

YawiNGg Frigar.—In airship study the flow velocity ¢’ caused by a prolate spheroid in
steady circular flight is specially interesting. Let the spheroid’s center describe about 0,
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Fizure 9, a circle of radius na, with path speed na®. Then if a is the constant yaw angle of
attack, the component cenuoxd velocities along a, b, and the steady angular speed about ¢ are,
respectively,

U=naQ cos a V=na sin « Qe=Qe .. (34)

If, now, velocities the reverse of (34) are imposed on the body and fluid, ¢, =0, and the
<urface velocity g on the fixed spheroid has in longitude and latitude the respective components

go= (1 +k)Usin 6—(1+%,)V cos 8 cos w—[m’, cos (§+ )+ cos (6 — B, cos w)
qo=(1+k)Vsin w+ (1+m’)Qr cos B sin w [

where positive flows along ds are, respectively, in the directions of increasing 5, w, as in Fig-
ure 3. The termsin I, V, are known formulas for translational flow, e. g., Reference 2; the others
ure from (27). Hence ¢* then p is found for any point (8, ») on the spheroid.® If Q. is negli-
gible, =7 sin ¢, where §= (1 +k,)?U?+ (1+k,)*V? and ¢ is the angle between the local and
polar normals, as proved in Reference 2.

Figure 9, portrays, for specified conditions, theoretical values of p/%sz, @ being the path
speed +/ U7+ V2 of the spheroid’s center; it also portrays p/%pQ2 for the model in rectilinear

motion, with ¢ = U. The difference of p/%sz for straight and curved paths, though material,

is less than experiment gives, as shown by 9,. Fuller treatment and data are given in
Reference 3.

The forces X, ¥ and moment N, for any zone, may be computed as before; but for the
whole model they are more readily found by the method of Part IV. Zonal ¥ and N for a
hull form are found in Part III.

The first of (35) applies also to an elliptic cylinder, with cos w=1, m’ = (¢’—b*)/2ab.
Fixed in a low — U, —V, —Q,, it has the surface velocity

q=(1+b/a) U sin 0~—(1+a/b)VcosG—l: oub cos (6+8)+cos (8— ﬁ)]ﬂr ___________ (36)

For an endless flat plate =0, cos 8 =b/a. sin 6 cot n; and the last term of (36) may be rewritten
by (21,); thus (36) becomes
gq=(U—~Vcotn—afl,cosncot 2q)sin .. _____________________. 37
These two values of ¢ with (1,) give the pressure distribution over an elliptic cylinder or flat
plate revolving about an axis parallel to its length or fixed in a fluid rotating about that axis.
Thus -an endless plate of width 2a, revolving with angular speed @, path radius na, and
incidence a, as in Figure 10,, has by (37) the relative surface velocity, viz, slip velocity
g/aQ=(n cos a—mn sin a cot p—cosncot 2q) sin O___________________ (38)
and since sin =1, 2= U*+ (V+2zQ)? = a®Q*(n?+ 2n sin a cos 1+ cos?y), (1) gives

p/%pa?(f =92+ 2n sin « cos n+cos 2p—n? (cos a—sin a cot 7 —% cosqgeot 29)%. . . __ (39)

For n=3, «=30°, Figure 10, delineates the distribution of slip velocity g/a® on both sides of
the plate; 10; that of the pressure p/% pa’Q? on its two faces. This pressure integrated over

the plate’s double surface gives Y=0, as may be shown. The dashed line in Figure 10; is the
pressure-difference graph whose integral for y=0 to = is also zero. The resultant forces X, ¥
and moment N for such a plate are found in Part IV by a method simpler ‘than surface inte-
gration of the pressure.

§ 1Tere again g is the slip speed of the ﬂow at any pomt ol the body s surface, and depends only on the relative motion of body and ﬂu1d
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Frow InsipE ELLipsoip.—At any point inside an ellipsoid with speeds U, V, W, Q,, Q,.
Q,, along and about a, b, ¢, filled with inviscid liquid otherwise still,

. b?—c? —at a
S S 7 a2
o=Ulr+ Vy+”2+b2+czﬂ"yz+cz+a2QDZT’+a

— h2
24 p2 Qay - . (40)
14
-.08
NO Yy F.06
® .04
By
Iy
34
-9
(1 \
\ Y,
7
\ v
| v //
Wy - Qx
b/’a a-=/0° U
=it
|

S
-3 w=180°
T T T T

- -/

H T~ T v T 71 77T
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———

w=/80"
FiGURE 9.—Prolate spheroid in steady yawing flight. (1) Defines

velocity conditions; (2) delineates theoretical pressure dis-
tribution; (3) experimental pressure distribution for Q=40 feet
per second. In (2) and (3), full lines indicate rectilinear,
dashed lines curvilinear motion

*-./0z

=7/

FIGURE 9 (continued).—For conditions (1), (4) delineates pressure joad per unit
length; (5) the zonal force; (6) the zonal moment.

In (4) the full and dotted liges
give theoretical values from equations (a1), {5); the dashed line, experimental values
{rom reference 3. (5) is obtained by planimetring (4); (6) by planimetring (5}
whose coeflicients are constant for the whole interior.
velocity ¢ are

Hence the components of the particle
Ov_ . —a’ a*—b?
2=t Ut araet g 20
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and like values for », w found by permuting the symbols. If the fluid were solidified any
particle would have
u=U+Qpz—Quy, ete., ete oo . (42)

Thus when an ellipsoid full of inviscid still fluid is given any pure translation its content moves
as a solid; but when given pure rotation each particle moves with less speed than if the fluid
were solidified, since the fractions in (41) are less than unity.

For velocities U, V, Q, of the ellipsoid

a2_b2
o=Uzx+ Vy+m9¢xy --------------------------- (43)
- v
-8 3038
'S
‘\0 y -5 25 § 8
o~
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2098 Y
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3 -5y § hﬁ@
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FIGURE 10.—~Endless flat plate revolving about axis parallel to its length, in infinite inviscid fluid. (1) Defines conditions; (2) delineates

relative velocity ¢/a @ of fluid; (3) pressure pr-;- p a? 22, and pressure difference A p/% p @' Q2 on two faces of plate

for which w=0¢/0z=0. For this plane flow (4) with (43) gives

1. a*-0 ,
¥y=UOy—Ve-5Q s @ —¥) (44)
whence the streamlines may be plotted. In particular if the model has simple rotation 2.,
PPN e ot 5
2—y= —2a2_b2¢/ﬂg=const ......................... (45)

and the interior streamlines are hyperbolas, as in Figure 5.
Adding (2) to ¢ in (45) gives the steady flow
Q.

Y= 2+ (@ + %) . . ... (46)
hence the streamlines lie on the elliptic cylinders
a?y’+ b= (a®*+b%)/Qy=const. . _____ _________________ 47

104397—30——28
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By (46) ¢=2Q.(a*y* + b'z®)}/(a® +b*), which put in (1) gives at (z, y), since go= — Q.R,

—po ey
Pa—P= (a2+b2)2(2:2+y2)p" ffffffffffffffffffffffffff

where p,=pg’/2. Here p, is the centrifugal pressure due to the fluid’s peripheral velocity
o, and p is the pressure change due to g¢,—¢, ¢ being the relative velocity of fluid and container.
In a like balloon hull ¢ would quickly damp out, leaving only p, as the dynamic pressure. At
the ends of g, b, ¢, respectively, (48) gives

Pa—p_  4b 4a
Pa @+ (@ +0%)

3 0.

For large a/b the first is negligible, the second approaches 4, giving p= —3p,= —1.500,2* as
the temporary dynamic pressure drop inside the hull at the end of . Experimental proof
would be interesting.

PorentiaL CoEerricients.—An ellipsoid of semiaxes @, b, ¢ along z, %, z, when moving
through an infinite inviscid liquid, otherwise still, with velocities U, V, W, @, @,, 2, along and
about the instantaneous lines of a, b, ¢, begets the known velocity potential

e=—mUx—myVy—m Wz—m' Qyz—m' Qozr—m' Qxy_ ... _________ 49

the six potential coefficients m being constant over any outer confocal ellipsoid a’d’c’. Their
values for abe are given in Tables IIT, IV. Alternatively (49) can be written for this surface

2 2 2 2 2 2
o=~ ko U= ke, Vy— k. Wa 0t Ol 0,z - I X P (50)

the ks being the more familiar inertia coefficients defined and tabulated in Part V. Of the six
potential coefficients in (50) the first three are the same as the inertia coefficients k., k,, k.
the last three are greater except when ¢/b or a/c or b/a is zero. Thus, if /¢ =0 the last term of
(50) is — &’ Q.xy, which is the potential on the outer surface of an elliptic cylinder (e = =) rotating
about ¢. Everywhere inside of it the potential is 2.2y, as (40) shows.

For the flow (40) textbooks give the incrtia coefficients

2 a2\2 2 __ 42\ 2
Fay T, = 1 k=(2f§) oG ) ete (1)

which are the squares of the potential coefficients. One notes too that the ratios of like terms
mm (40), (50) equal the ratios of like potential coefficients and like inertia coefficients, which
latter in turn are known to equal the ratios of like kinetic energies of the whole outer and inner
fluids, if the inner moves as a solid.

RevaTive Vevocity anp Kineric PrEssure.—When a body moves steadily through a
perfect fluid, otherwise still, the absolute flow velocity it begets at any point (x, ¥, z), being
unsteady, is not a measure of the pressure change there. The relative velocity is such a measure.
To find it we superposed on the moving body and its flow field an equal counter velocity, thus
reducing the body to rest and making the flow about it steady. The same result would follow
from geometrically adding to said absolute flow velocity the reversed velocity of (z, y, z) assumed
fixed to the body. In particular this process gives for any point of the body’s surface the wash
velocity, or slip speed, which with Bernoulli’s principle determines the entailed change of surface
pressure. Conversely, if the pressure change at a point is known or measured, it determines
the relative velocity there. In hydrodynamic books the above reversal is used commonly
enough for bodies in translation. In this text it is employed as well for rotation; also for
combined translation and rotation. However general its steady motion, the body is steadily
accompanied by a flow pattern whose every point, fixed relatively to the body, has constant
relative velocity and constant magnitude of instantaneous absolute velocity and pressure.
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PART 111
ZONAL FORCES ON HULL FORMS!

Pressure Loaping.—For a prolate spheroid abe with speeds U, V, Q,, Figure 9,, or fixed
in a stream — U, —V, —Q,, (35) gives at (z, y, z) on abc the relative velocity

F=¢+q°=A—Bcos w+ cos® w

A, B, € being constant for any latitude circle. In forming this equation one finds

B=2(1+k,)Usin 6{(1+k,)V cos 8+ [m’, cos (8+8)+cos (§—8)]r2.},
etc., for A, €. In the body’s absence said stream has, at said point (z, ¥, 2),

@’ =(— U+yQ.) + (= V—-u2.)=A,— B, cos w+ () cos® w,
where w alone varies on the latitude circle. Its radius being y, =z, makes y =1y, cos w,
B,=2Uz%,,

etc., for A;, C}. Putting g, ¢, in (1) gives the surface pressure

plop=qt—¢*=(A,— A)+ (B—B)) cos w+ (0, — ) cos® w.

2 2r

By (10,) the loading per unit length of x is, sinceﬁ cos w=0= | cos® w,

2r 2r
Pl5p=— ?;J; P cos wdw= — (B—-Bl)zoﬁ cos’ wdw=—n(B—B)zp-.__ .. _. (a)

A, Ay, C, C, vanishing on integration of p. Thus, finally,
PlopQP=—a(B—~B)afQ* - - . .. (ar)

P having the direction of the cross-hull component of p at w=0.

One notes that ¢2(x sin® w) contributes nothing to B or the integral in (a); viz, the loading
P is unaffected by q., and depends solely on ¢,, the meridian component of the wash velocity.
Also for =0 and =, B—B,=0=P.

In Figure 9, the full line depicts (a,) for the spheroid shown in 9, circling steadily at 40
feet persecond. The theoretical dots closely agrecing with it are from Jones, Reference 3, as is
also the experimental graph. Beside them is a second theoretical graph plotted from Doctor
Munk’s approximate formula derived in Reference 8 and given in the next paragraph. But
that Professor Jones omitted some minor terms in his value of p, his theoretical P/.5pQ* should
exactly equal (a,). His formula, derived by use of Kelvin’s p,/p =&—¢*/2, can best be studied
in the detailed treatment of Reference 3.

In Reference 8 Professor Ames derives Munk’s airship hull formula

. dS 2 d
.5pQ2=51n 2a a’z’:'*‘ﬁaz: (JJS),

! This part was added after Par‘t; T, IL, IV, V were typed; hence the special numbering of the equations.
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§ being the area of a cross-section; R the radius of the path of the ship’s center. This was
assumed valid for a quite longish solid of revolution; for a short one it was hypothetically
changed to

P . ds k. d
;5’5Q2=(kb—ka) s 2a (_HJ+ 2R dz (xS) ---------------------- {(b)

Applying this to a prolate spheroid we derive the working formula

%= —Le— Me®+ N ... (b,

where the constants for a fixed angle of attack are?

2 2 9
L=2(kb—7ca)22- 7 sin 2q, Zl[=37c’,zz-}7; cos a, N=7c’cb2-2£cos a.

Plotting (b,) for the conditions in 9, gives the dotted curve in 9,. It shows large values
of P/.5pQ" for the ends of the spheroid, where (a,) gives zero. To that extent it fails, though
with little consequent error in the zonal force and moment at the hull extremities. It has th
merit of being convenient and applicable to any round hull whose equation may be unknow:
or difficult to use.

ZoNaL ForcE~—An end segment of the prolate spheroid, say beyond the section r=x,
bears the resultant cross pressure

n

which with the resisting shear at x, must balance the cross-hull acceleration force on the sey-
ment in yawing flight. For the whole model (b,) with (¢) gives ¥ =0, which is not strictl
true for curvilinear motion; but (a;) with (¢) gives the correct theoretical value of Y, and
agrees with (67).

In Figure 95 graphs of Y/.5pQ? for the values (a,) and (b,) of P, are shown beside thosc
derived from Jones’ experimental pressure curve. Since Y is proportional to the ares of «
segment of the graph of P, it can be found by planimetering the segment or by integrating Pd..

ZoNaL MomenT—The loading P exerts on any end segment, say of length a—x, the
moment about its base diameter z

a
N Yo

which can be found by planimetering the graph of ¥. Figure 9, delineates N, so derived from
the three graphs of ¥. They show the moment on the right hand segment varying in length
from 0 to 2a; also on the left segment of length from 0 to 2a. The resisting moment of tl¢
cross section must balance N, and the acceleration moment of the segment.

Correcrion Facrors.—No attempt is here made to deduce theoretically a correction
factor to reconcile the computed and measured p. In Reference 3 Jones shows that the the.-
retical and experimental graphs of P/.5pQ* have, for any given latitude 2, >a/2, the san.
difference of ordinate whatever the incidence 0<Ca<20°. Thus the ordinate difference fourl
for the zero-incidence graphs, when applied to the theoretical graph for any fixed 0<la<{2¢ ",
determines the experimental one with good accuracy. Such established agreement in loadiny
favorably affects, in turn, the graphs of ¥, N, the transverse force and moment on any end
segment of the spheroid.

1 1 3
*From the meridian curve %+W =1 dpo__ b1z %y;-—

ds
= 2 a=
Tt g dr i w» S=nys?, hence 2xy0

H
dr 2r b;,r 1z, which put in (b) leads to (by).
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PART IV
RESULTANT FORCE AND MOMENT

Bopy 1x FreE Space.—Let a homogeneous ellipsoid of semiaxes a, b, ¢ move freely with
component velocities u, », w, p, ¢, r' respectively along and about instantaneous fixed space
Xes x, 9, z coinciding at the instant with @, b, c. Then the linear and angular momenta referred
[0, Yy, 2 are

mau mp mw Ap By O . (52)

m; being the body’s mass, A,, B, C; its moments of inertia about «, b, ¢. If, now, forces X,
11, Z, and moments L,, M, N, are applied to the body along and about z, ¥, z, they cause in
the vectors (52) the well-known change rates

my (i —ro+qw) =X, A p—(B,—C)gr=1L,
m(d—pwtru)=Y, Byg—(Ci—A)rp=M, . (53)
my (b — qu+ pr) =2Z, Cir— (A= B)pg= M

which apply to any homogeneous solid symmetrical about the planes ab, be, ca.
For motion in the ab plane; viz, for w, p, ¢=0; (53) give

1=m1(1l—rv) 1=m1(7')+1‘u) ]Vlz 017' ________________ (54)

und for uniform revolution about an axis parallel to z, as in Figure 11, viz, for %, o, #=0, (54)

hecome
X1= —m,re Y1=m17‘u N1=O ______________________ (55)

where now X,, ¥, are merely components of the centripetal force m,ryu?+?, whose slope is
Y/ Xi=—ufo. Alsoif Q=+/u2+¢?is the path velocity of the body’s centroid, A its path radius,
r =Q/h is the angular velocity of & and of vector m,Q.

Reacrions oF Fruip.—If external forces impel the ellipsoid from rest in a quiescent fric-
tionless infinite liquid, with said velocities u, », w, p, ¢, 7, they beget in the fluid the corresponding
linear and angular momenta

k.mu kymo k.mw k' Ap k’yBg E.Cro__ . (56)

where m is the mass of the displaced fluid, and 4, B, C its moments of inertia about a, b, c.

One calls k,m, kym, k.m the “apparent additiondl masses"”; ¥’ .4, k' B, k’.C the “ apparent
additional moments of inertia,” of the body for its axial directions; because the fluid’s resistance
to its linear and angular acceleration gives the appearance of such added inertia in the body.
The six k's are called “inertia coefficients,” and are shape constants. Values of them are
given in Tables I1I, VI, VIII for various simple quadrics.

The component flow momenta (56), like (52), are vectors along the instantaneous directions
of o, b, ¢c; viz, along x, y, z; hence their time rates of change must equal the forces and moments
which the body exerts on the fluid; viz,

X=mka—kyrv+k.qu) L=} Ap— & ,B—k'.Cygr— (ky— k. ymow
Y=mlo—k.pw+k.ru) M=k ,B¢g— k' .C—k Ayrp— (k.— k)mwu N 6Y))
Z=mk b —k.qu+k,pv) N=t'Cr— (k' A=k B)pg— (ks—ks)muv

i These new meanings of u, o, 1, &, g, r are assigned for convention's sake and for convenience.
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all written from (53) on replacing its momenta by those of (56), and adding vector-shift terms.
Thus the vector & mw shifts with speed » entailing the change rate k;mw.v of angular momentum
about x, while k,mp shifts with speed w entailing the opposite rate—k,me.w. Their sum is
(k.—ky)mow. Permuting these gives for the y, z axes (b, —k )mwu, (k,—k.)mur. When the
k’s are equal the vector-shift terms vanish, as for said free body, or for a sphere, cube, etc., in a
fluid. The fluid reactions are (57) reversed. (57) apply also to fluid inside the trisymmetrical
surface.
If the angle of attack is a=tan™'»/u, we may write in (33), (57)

. 1 .
r=Q/h u=Q cos a r=@Q sin « uv=§Q2 sin 2. __________ (58)

-myv.r

FiGure 11.—Momenta and forces for [ree body in uniform circular motion. Centripetal force, Ri=mQr=
mQh, has slope —u/fp, r being angular speed about 0
Of special aeronautic interest are (57) for plane motion, such as in yawing airship flight.
for which w, p, ¢ =0, giving

X=m(ka—k,rv) Y=mkw+k.ru) N=k" Cr+ (ky—komuv___ . __ (5M
Thus for uniform circular flight

X=—k,mrp Y=Fk,mru N=(k,—k)mur

which are the analogues of (55) for the free body. Or in notation (58)

X= *kiir pQ)? sin o Y=k;lrp(22 Cos a N=(k,— ka)r’i?; sin 2o . ___ i)

7 being the volume of the model.
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As shown in Figure 12 (60) give the resultant force and slope

R =mrJkul+ k2* Y/ X= —77;'" cot = —cot B._.____________ (62)
1

also B and N at the origin arc equivalent to a parallel force B through the path center 0, along
a line (called the central axis of the force system) whose arm and intercepts are

I=N/R=hsin (8—a) rx=1sec B y=lcosee B_____________ (63)
o
Y
\
\h
/
/ 242 2y /
; /
| /
\ | /
ST e e Aramur/ | /
) ! 7
| (s ———r—/—f‘—— 1~
! R W !
‘ \ a7
!
| = \ b, 5/\ l’ f
e | A
-k, mu.r T —— o, -4, a k.mu mu
2 ‘~/—z/_\$7y
-

Fioure 12,—Momenta and forces for symmetrical body in uniform circular motion through frictionless infinite
liquid otherwise at rest. Whole hydrodynamic force, R=mr vka? uitkst v?, has slope —k, u/ks . Yaw

moment N=(ks—ka) mut=(_ky—ka) 1p§7 sin 2a, v being volume

For steady motion (60) show that the body sustains no force in pure translation r=0);
no force nor moment in pure rotation (u, v=0); no moment in revolution about a point on
zory; viz, for u=0, or v=0. For given , v the moment is the same for revolution as for pure
translation.  The forces result from combined translation and rotation; the moment from
translation oblique to the axes a, b, irrespective of rotational speed.

ComBiNaTION OF AppLiED Forces.—To find the whole applied force constraining & body
to uniform ecircular motion in a perfect fluid (55), (60) may be added, or graphs like those of
Figures 11, 12, may be superposed. For an airship having m,=m, (55), (60) give

X=—(1+k)mor

Y =(1+k)mur N=(y—kmuv___ . ____._ (64)

! Writing R=rQ.mkq? costa+k37 sinla we may call it the centripetal force of the apparent mass m+/ka? Costa-ks? Sinia for the bady direc-
tion of Q.
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where X=X,+ X, ete. Figure 13, compounded of Figures 11, 12, shows that a submerged
plane-force model, revolving uniformly about its path center, may have as sole constraint a
single force B through that center, and outside itself; that is attached to an extension of the
model. Such conditions appear commonly in vector diagrams of aircraft. The line of R, so
defined, is the central axis of the force system.

HYDROKINETICALLY SyMMETRIC ForMs.—Equations (56), (57), for trisymmetrical shapes,
apply also to others having hydrokinetic symmetry. Examples of these are: All surfaces of
revolution, axially symmetric surfaces whose cross sections are regular polygons; torpedo forms
symmetrically finned, etc. All these figures, as has been known many decades,® have three
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FioURE 13.—Composition of forces on symmetrical boly in uniform circular motion through frictionless infinite liquid

otherwise at rest. Resultant of centripetal and hydrodynamic forces, E=m r +/(14Ka)? u?+(I-ks)? i, has slope

1+ke u . .
T Figure 13 is 11 and 12 compounded

orthogonal axes with origin at the body’s impulse center,* such that if the body, resting in
quiet sea of perfect fluid, is impelled along or about either axis it begets in the fluid a line:a
or angular momentum expressible by a vector along that axis.

ExavrLes.—We may apply (60) to some simple cases interesting to the aeronautic:|
engineer.

(1) For an endless elliptic cylinder in uniform yawing flight, as in Figure 12, m= mpab por
unit length, and by comparison with Table VIII k,=b/a, k,=a/b; hence by (60)

 See Reference 7.
+1. e., the point of intersection of kam U, kemV, kem W; it may be found as in the last paragraph of Part V.
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2
X = —rma*prv Y = nbpru N=r(a’—b)p.uv=n(a*—b?) Pg_ sin 2a_ _____._ (65)

The resultant force wprya*%?+b*u? has the slope —b*u/a% = —b¥/a’.cot a; the central axis is
through the path center; X is the same as for a round cylinder of radius e¢; Y the same as for
one of radius b. For a good elliptic aircraft strut a/b=3; hence X/Y=—9p/u= —9 tan a;

2
AV=81rbzpuv=81er.p§ sin 2«. By (65) N is the same for all confocal elliptic cylinders, since

a®*—b% is so. 1
If a=b, as for a round strut, N=0, R=ra?rQ%¥and coincides with the body’s previously
found centripetal force to which it bears the ratio m/m,.

If =0, as for a flat plate, (65) become
2
X = —ra’prv Y=0 N=rna’pup= wazp—g— sin 2e0_ _______.____ (66)°

The equivalent resultant force ma?rv, with slope Y/X = —0, runs through the path center
parallel to x. If r=0, the plate has pure translation, with forces X, Y =0, and moment
N=mwa*puv, & well known result. X in (66), being the same as in
i65), is independent of the strut thickness b.

(2) For a prolate spheroid, of semiaxes @, b, b, in uniform
vawing flight, m=4/3.7pab?, and k,, %, are as given in Table III.
Thus for a/b=4, k,, k,=0.082, 0.860; hence by (60)

X = —3.6ab’rv Y =0.3434ab’oru N=3.26ab’puv_(67)
(3) For an elliptic disk of semiaxes a, b, ¢, moving as in Fig-
ure 14, Table VIII gives kcm=§1rpab2/E; hence by (57) the forces

and moment are

4a

Y=—-kmpw= —SE.prz.pw Z=0
4 FiGURE 14.—Thin elliptic wing moving par-
— _1a llel to its plane of symmetry through a
L=kmow=__ rpb>ow (68) b P yimmetry troug
3K pOIW_ o perfect fluid

the other pertinent terms in (57) vanishing, as appears on numerical substitution. Here
2
= E(G,%), sin®0 = (a®—b?)/a?; also L=§fg.1rb’p§' sin 2a. Compare (68) with (66), calling b the

width in both.

Tueory VERsus ExperIMENT.—In favorable cases the moment formulas of Part IV
secord fairly well with experiment, as the following instances show. For lack of available data
the force formulas for curvilinear motion are not compared with experiment.

(1) By (65) an endless elliptic strut with a=1/3 foot, 5=1/12 foot, ¢=5 feet, held at «
degrees incidence in a uniform stream of standard air at 40 miles an hour, for which pQ?/2=
1.093 pounds per square foot, sustains the yawing moment per foot length

2
N==(a*—b%. pg sin 2a=1.3392 sin 2« 1b. ft___________________ 69)

This compares with the values found in the Navy 8 by 8 foot tunnel, as shown in Table IX
laired from Figure 15. The agreement is approximate for small angles of attack. The model
was of varnished mahogany, and during test was held with its long axis ¢ level across stream,
and with two closely adjacent sheet metal end plates, 2 feet square, to give the effect of plane
flow,

- Equations (66) were published in Reference 5 as the result of a special research to determine the fluid forces and moment on a revolving plate
Tt: 1he present text they follow as corollaries from more general formulas.
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(2) By (66) an endless thin flat plate of width 2¢ =5/12 feet, similarly held in the same
air stream, has per unit length the moment

2
N=na? ”g sin 2a=0.5581 sin 2a Ib. ft. . .. _______________ (70)

This is compared in Table X and Figure 16 with the values found in the Navy 8 by 8 foot
tunnel. The flat plate was of polished sheet aluminum 3/32 inch thick, with half round edges
front and rear.

Again for an endless flat steel plate 5.95 inches wide by 0.178 inch thick at the center, with
its front face flat and back face V-tapered to sharp edges, Fage and Johansen, Reference 6,

K x Theoretical / .

N ~» ) e
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g N ) ~
X = /\fxper/menfa/ ~
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3 3
T T T T T T T T T T T T T T T T T T T
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FIGURE 15.—Theoretical and experimental moment FIGURE 18.—Theorectical and experimental moment about long axis of endless
about long axis of endless elliptic cylinder. Width rectangular plate. Width 5 inches, air speed 40 miles per hour. Correction
3 inches, thickness 2 inches, air speed 40 miles per factor x=0.860

hour. Correction factor x=0.912

found, at 50 feet per second and 5.85° angle of attack, N=0.125 pound foot as the moment
per foot run about the long axis, computed from the measured pressure over the median section.
By (66), a thin flat plate would have
2
N=wa® - E,éQ_ - sin 2a=0.1931 X 2.9725 X 0.2028 = 0.116 lb. ft.
which is 7 per cent less than 0.125 found with their slightly cambered plate.

(3) An elliptic disk 3/32 inch thick with a, b=15, 2.5 inches, when held as a wing in the
Navy 40-mile-an-hour stream, had the moment L versus angle of attack « shown in Figure 17
and Table XI. For this case

sin®d = (a® - b*)/a’ = 875/900, 6=80°—24', E=1.03758.

Also in (68) a=5/4 feet, b=15/24 feet, @*=4.093; hence

2
gg - xb? - % . sin 2a=0.8963 sin 2o 1b. ft.. .. (

L=
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which gives the theoretical values in Figure 17 and Table XI. The agreement is fair
at small incidences. The disk as tested was of sheet aluminum cut square at the
edges without any rounding or sharpening.

(4) For awooden prolate spheroid .20 ;
24 inches long by 6 inches thick, N
carried as in Figure 12 round a circle /8 @o [« x Theoretical
of radius A =27.96 feet to the model’s - /6 é“’ ’,” N
center, Jones, Reference 3, found at 4 !i\@ /i \
40 feet per second the values of N - / \
listed in Table XII. For this case qr./2 / \
Table III gives ky—%,=0.778, and AN 10 %——Ex o ertal
. ~F. perimenta . —
(61) gives S -
pQ% . . Ny
N=(ky—lq)r- 9 +sin2a=0.388sin2¢. § /
.06
These values appear from Table XII
. . o4
not to accord closely with the experi-
mental ones. ~jo2
CorrectioN Facrors.—Figures

15, 16, 17 portray experimental _go Aé‘“ e o 2 4l } é" 00 120 /4ll° /é° /éli" 2To°
moments, at small angles, as accu- - =02 Angle of attack,o
rately equal to the theoretical times Ny
an empirical correction factor «. / '
Thus amended (61) gives for the 7 F-06
experimental moment 2 /P

Ne=xN=k(ky—kq)7 * pg * sin 2e. {/ L_ /0
For the given elliptical cylinder ! —
«k=0.912 with —8°<a<(6°;, for /

the endless plate x=0.860 with 4 4

—-6°<a<(6° for the elliptic disk S/ - /5
«=0.887 with —5°<a<{4°. Insuch « /
cases one should expect to find the ' -8
actual air pressure nearly equal to F-20

the theoretical over the model’s Ficure 17.~Theoretical and experimental moment about long axis of elliptic disk.
. Length 30 inches, width 5 inches, air speed 40 miles per hour. Correction [actor

forward part, but so deficient along %
the rear upper surface as to cause a
defect of resultant moment. No effort is made here to estimate it theoretically, nor to de-
termine it empirically for a wide range of conditions.

The measurements shown in Table X, for the flat plate, were repeated at 50 and 60 miles
an hour without perceptible scale effect.
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PART V

POTENTIAL COEFFICIENTS, INERTIA COEFFICIENTS

GreeN’s InTeGraLs.—The foregoing text employs Green's well-known integrals, which
for the ellipsoid abc may be symbolized thus:

© da = dx ® dx
a=abcj; pTIY B=abc.[; b7 ~/=abcj; O EEEEEEE (72)

where a’ = va?+ X, b’ = /b2 1}, etc., are semiaxes of the confocal ellipsoid a’d’¢’.  The integrals
have the following values, Reference 4:

a=A®—c)[F(, ¢)—E(0, o)l

. - ¢
p-A—a o GFe o+ G - e, o) ray

y=A@ - Va-c s - E6, o) |

where

A= 2abc B . 20_a2~bf _a—=c
= @@= (h*—¢%) \/GZ—CZ sin Tat— ¢t sinfp=

and the elliptic integrals are
F(, ¢)= S (1—sin®) sin’¢) *de E@®, )= S (1 —sin’d sin®p)*de. . . ._____(75)

Numerical values of F(6, ¢), E, ¢), a, 8, v are given in Tables I, II for A=0 and various
ratios a/b, bjc; viz, for various shapes of the ellipsoid abc. For ¢==/2 one writes F(f, o) = K,
E(, ¢)=E, by convention.

PorenTiaL CoerFriciENTs.—For motion (49) the ellipsoid abe has the potential coefficients
known from textbooks.

o , . Glr—8 . _b=ea

Me=0_ o M a= 06— (yo— ) where G=y, 0,
B T : (G VO _¢-a

my=g5= 3 M=o — (oo — 7o) where H_cz+a2 -------------- (76)
_ v o AB=) _e-b

e o M= 5T (Be— ) where I_a”+b2

Mg, ma, M, being for translation along a, b, ¢ and m’,, m’,, m’ for rotation about them, and
an, Bo, o being (73) for A=0; viz, for ¢’, ¥, ¢'=a, b, c. Surface values of (76), viz, for «, 8, v=
oo, Bo, Yo are given in Tables III, IV. For fluid inside the ellipsoid the potential coefficients are
as in (40) and given numerically in Table V.

IxerTiA CoEFFICIENTS.—From (76) are derived the conventional linear and angular inertia

coefficients
ko, ko, ke=mg, My, m, o koK .=Gm/ o, Hm' y, Im’ . ______ @7

for the ellipsoid moving through or containing liquid, as in (40), (49). Surface values are
given in Tables ITI, VI, VII.

1 (73) satisfy the known relation a+8-+~y=2abc/a’b’e’, ns appears on adding.
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Limitine ConpiTioNs.—In some limiting cases, as for ¢=0, or =5, etc., (73) may become
indeterminate and require evaluation, as in Reference 4. Insuch cases the formulas in Table
VIII may be used. For ¢=0, entailing zero mass and infinite k., %',, k’,, one may use in (57)
the values of k;m, &’,4, k’',B given at the bottom of Table VIII.

PuysicaL. MeaninGg oF THE CoerriciENTs.—The tabulated potential coefficients, put in
(40) or (49), serve to find the numerical value of the potential ¢, or impulse — py per unit area,
at any point (z, ¥, 2) of an ellipsoid surface.? Integration of pp over any surface, as explained
for p in Part I, gives the component linear and angular zonal impulses. So, too, integration of
— ppqa/2, where ¢, is the normal surface velocity at (z, y, 2), gives the kinetic energy imparted
to the fluid; and integration of the impulsive pressure — pde/dt gives the impulsive zonal
forces and moments. One finds pd¢/dt for (40), (49) by using with them the specified density
o, accelerations U, V, W, Q,, ,, @, and tabulated potential coefficients for the given semiaxes
a, b, c.

Thus putting ~ pe., —pe’. for p in (8), (10,), and integrating over the whole ellipsoid
surface, easily gives the fluid’s linear and angular momenta

k.mW B O oo (78)

where m W, 0Q, are respectively the linear and angular momenta of the displaced fluid moving
as a solid with velocities W, Q.. The like surface integration of — pp.g./2 gives, as is well known,

k.m W2 B o CRf2 . (79)

where m W%/2, CQ?,/2 are the kinetic energies of the displaced fluid so moving. Each inertia
coefficient therefore is a ratio of the body’s apparent inertia, due to the field fluid, to the like
inertia of the displaced fluid moving as a solid.

By (49) the potential coefficients due to velocities W, Q. are

me=— ‘Pc/‘VZ m .= _‘P'c/gcxy

The first is the ratio of the outer and inner surface potentials due to W at any point z on the
ellipsoid abe; the second is the ratio of the potentials due to Q. at (z, y), respectively on the
outer surface of that ellipsoid and inside the cylinder of semiaxes «, b, c.

One notes that the momenta (78) times half the velocities give (79); also that the time
derivatives of (78) are the force and moment Z, N=k.m W, &’.CQ,, as in (57) for the simple
z-wise motions, W, Q.

For any axial surface, say of torpedo form, moving as in Figure 12, the ratio —k’.CQ./k;mV
is the distance from the arbitrary origin 0, to the impulse center 0,, or center of virtual mass.
This may be taken as origin, and if the body’s center of mass also is there Figures 11, 12 can
still be superposed as in Figure 13. In the same way are related the acceleration force and
moment k,mV, k’ .02, thus illustrating the doctrine that the motion of a hydrokinetically sym-
metric form in a boundless perfect fluid, without circulation, obeys the ordinary dynamic
equations for a rigid body.

AERODYNAMICAL LABORATORY,
Bureau or ConstrucTioN aND REpair, U. S. Navy,
WasHINGTON, D. C., December 17, 1928.

1 This impulse is imparted by the moving surface to the fluid, otherwise still; the Auid in turn tends to impart to the body the impulse p¢
per unit area at (1, ¥, 2).
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CHIEF SYMBOLS USED IN THE TEXT

GEOMETRICAL
a, b, co . ... Semiaxes of ellipsoid abe.
a', b, el .--- Semiaxes of confocal ellipsoid a’b’c’.
e, e . . __. Eccentricities of ellipse ab and its confocal a'b’; ae=a'e’ =+/a?— b2
ny by hao L. . -~ .. Normal to eilipse ab; distances from origin to normal and tangent.
Lm,n__.___ R, Direction cosines of normal n to any surface.
8§ Sy Swo- oo .. Length along any line; lengths along meridian and circle of latitude.
Y 2o .-.- Cartesian coordinates; also coordinate axes.
By wo L .. _. Polar coordinates of prolate spheroid abc.
L _-.--- Eccentric angle of ab, inclination to z of normal to ab.
KINEMATICAL
Wy U, WL Component velocities of fluid parallel to z, y, z axes.
Gty Qe mmom oo oe e Component velocities of fluid parallel to tangent and normal.
Qoy Gamom e Resultant velocity of fluid before and after disturbance.
U, ¥, Wo o e Component translation velocities of abc parallel to g, b, ¢
U, v, w.o______._ . Component translation velocities of abc parallel to a, b, ¢ .
. i Alternative symbols.
I A Component rotation velocities of abc about a, b, e______
Qo Qpy Qe oL .- Component rotation velocities of abc about a, b, ¢______
oW oo Velocity potential, stream function.
Ma, My Meo o - —_ - -- Potential coefficients for abc with velocities u, v, wor U, V, W.
ma my, me____ . _ Potential coefficients for abc with velocities p, ¢, r or 2., 4, Q..
0=+ TT+VIL W?__ Resultant veloeity of abe.
DYNAMICAL
4,, B, Ci.._ _____ Moments of inertia of rigid body about its axes a, b, c.
A, B, C..._ ... __ Moments of inertia of displaced fluid moving as a solid.
My, Moo Mass of body, mass of displaced fluid.
By T o Density of fluid, volume of model or displaced fluid.
N P Pressure of fluid moving, pressure on coming to rest.
X, Y., Zy; Ri_____ Component forces applied to free rigid body; resultant force.
XY, Z; R.___._ - Component forces exerted by body on fluid; resultant force.
Ly, My, Ny ____._ Component moments about a, b, ¢ applied to rigid body.
L M, N____._ . _ Component moments about a, b, ¢ exerted by body on fluid.
Kay by ke o - Inertia coefficients for abc moving parallel to a, b, ¢ in fluid.
Kooy k'og kM e - Inertia coefficients for abe rotating about a, b, ¢ in fluid.
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ELLIPTIC INTEGRALS F(9, ¢), E®, ¢)!
,JDeﬂq,e,d,,iP eq. (75)7, Part Y] }

TABLE I

| bjc
ajc , l ; ‘ - -
1 2 t 3 4 5 l 6 7 8 9 I 10 ©
,,,,,, SR S EE | |
F@, )
1 0. 00000
2 1. 31698 1.04720 i
3 1, 76305 1. 43870 1. 23005
4 2. 06412 1.71374 1. 48399 1.31814
5 2.20319 1.92708 1. 68471 1. 50687 1. 36940 t
[} 2. 47803 210413 1. 85188 1. 66560 1. 52053 1. 40332 i
7 2. 63508 2. 25400 1. 99520 1, 80281 1. 65204 1. 52959 1, 42745 :
] 2. 77024 2. 38432 2.12075 1. 92379 1. 76856 1.64194 1. 53595 1. 44550
9 2. 80035 2. 49971 2, 23255 2.03101 1. 87318 1. 74321 1. 63405 1. 54065 1. 45948
10 2. 90638 2, 60288 2, 33303 2. 12855 1 1. 83534 1, 72357 1. 62768 1. 54419 1. 47063
w L L] w w oo -« -] -« -] w©
E@®, ¢
| | ! T o T a
1 0. 00000 i 1 !
! 2 . 86603 1. 04720 i |
3 . 54277 1.07024 1.23095 | ! [ }
4 . 96822 1. 06091 1.18103 | 1.31814 ! ; i
5 . 67875 1. 05019 1. 14337 i 1, 25126 1, 36840 ; | !
6 . 98507 1. 04146 111604 | 1.20294 1 i 1.40332 ! |
. 7 . 98972 1. 03472 1. 09589 1. 16833 1.24803 | 1.33574 142745
; 8 . 99214 1. 02846 1. 08071 ‘ 1. 14185 1.21035 | 1.28451 | 1.36317 | 1.44550
g . 09378 1.02529 1.068%4  1.12136 118040 | 1.24464 | 1.31304 . 1.38483 1. 45048
10 . 90406 1. 02185 1.05966 - 1.10516 | 1.15669 ‘ 1. 21207 1.27310 | 1.33642 1. 40240 1. 47063 |
| @ 1. 00000 1. 00000 1.00000 | 100000 @ 1.00000 | 1. 00000 1. 00000 ‘ 1. 00000 1. 00000 1. 00000 i
T B HO et R A TN S AU SR P S
1 The integrals in this table are culled from L. Potin’s Formules et Tables Numerique.
TABLE II
GREEN’S INTEGRALS a, o, 70
[Defined in eq. (73), Part V]
bie i
T
aje t 5 l [ 7 l 8 9 i 10 ‘ ©
w |
|
. R ——— S |
S 0.6667 | \
i 2 . 34713 0.47280 | !
3 . 21751 .31265 | 0.36460 i
4 . 15092 . 22474 1 . 26820 0. 29636 |
5 L1710 117064 . 20719 . 23189 0. 24951 i
6 . 086527 13471 .16584 ¢ 18769 . 20336 0. 21541 i
7 .069266 | 10950 L13629 0 15541 . 16970 .18079 ¢+ 0.18850 )
8 . 056894 091037 . 11435 . 13135 . 14426 . 15440 16254 0. 16914 ‘
9 47710 i 077071 . 047571 . 11276 L 12448 . 13378 14132 . 14757 0. 15271
10 | L 040637 066203 . 084381 . 047957 | . 10872 L 11728 12428 | . 13010 . 13500 0. 13920
@ 0 0 ¢ 0 ¢ 0 0 0 1] 0
. j .
Bo
| i e e : g
|1 0. 66667 !
2 . 82643 0. 47280
3 80127 . 53423 0. 36460
4 92459 . 56964 . 39662 0. 29636
5 94418 , 59182 41804 . 31587 0. 24951
6 . 95678 . 60693 . 43307 . 32065 . 26265 0. 21541
7 . 96538 .61775 . 44413 . 34083 271275 . 22477 0. 18950
8 97154 62577 . 45260 . 34912 28071 . 23234 . 19654 0. 16914
9 97619 63184 . 45913 . 35569 28700 . 23847 20237 . 17458 0. 15271
; 10 97972 63659 . 46437 . 36109 29233 | . 24354 20725 . 17927 . 15712 0. 13920
i @ 1. 00000 66667 . 50000 . 40000 33333 . 28572 25000 . 22222 . 20000 L 18182 0
. 7 = . 7 P i
' k4]
i S o o e :
1 0. 66667 \
P2 L8643 105440 i ;
3 L 89127 1. 15312 L27018 i
4 . 92459 1, 20572 1.33518 | 1.40726 |
5 . 94418 1. 23752 1. 37478 1. 45223 1. 50098 ;
6 . 45678 1. 25835 1. 40110 1. 48267 1, 53401 1. 56918 ! i
7 . 96538 1.27273 1, 41956 1, 50377 1, 55754 1. 58443 1. 62100 i
8 L 97154 1, 28320 1. 43306 1.51953 1, 57504 1. 61325 1.64091 | 1.66172
9 . 97619 1. 20109 1. 44329 1. 53154 1. 58844 1. 62775 1.65630 . 1.67784 1. 69457 1
10 L 97972 1, 29720 1. 45125 1. 54094 1, 50895 1. 63917 1. 66846 1. 69062 1. 70787 1.72180
| © 1 1, 33333 1. 50000 1. 60000 1. 66667 1. 71429 1. 75000 177778 1, 80000 1. 81818 2. 00CU0

|
|
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POTENTIAL COEFFICIENTS m,, m,, m.,* FOR ELLIPSOIDS IN TRANSLATION

(For outer surface of a b ¢)

(Defined in eq. (76))

bje
a/c 1 3 4 (<] 7 8 g 10
Ma
1 0. 5000
2 . 2100
3 . 1220 0.2229
4 . 08162 . 1549 0. 1740
5 . 05918 . 1156 L1312
6 . 04522 . 09042 . 1038 0.1207
7 . 03588 . 07313 . 08425 . 09938 0. 1047
8 . 02928 . 06064 07029 . 08366 . 08848 0. 09238
9 . 02444 . 05129 . 05975 . 07189 . 07603 . 079686 0. 08267
10 . 02074 . 04405 . 05150 . 06229 . 06626 . 06858 . 07239 0, 07481
© 0 1] 0 1] 0 0 1]
my
1 0. 5000
2 L7042
3 . 8039 0.2229
4 . 8598 . 2474 0.1740
5 . 8043 . 2643 . 1876
6 L9171 . 2764 L1974 0.1207
7 . 9331 . 2855 . 2054 . 1266 0.1047
8 . 0447 . 2925 L2115 . 1314 . 1090 0.09238
9 . 9535 . 2080 . 2163 . 1354 L1126 . 09564 0. 08267
10 . 9603 . 3024 . 2203 . 1387 . 11568 . 098468 . 08526 0.07481
© 1.0000 . 3333 . 2500 . 1667 L1429 . 12500 393401 Bl
me
1 0. 5000
2 . 7042
3 . 8039 1.743
4 . 8508 2,008 2,374
5 . 8943 2,199 2.651 3.008
6 . 0171 2,339 2,866 3,202 3.642
7 . 9331 2, 446 3.030 3.520 3.931 4.277
8 . 447 2.528 3. 163 3. 706 4.171 4. 570 4.912
9 . 9535 2. 593 3.269 3. 860 4.373 4.819 5.208 5.548
10 . 9603 2.645 3.357 3. 987 4. 543 5.032 5.465 5.846 6,184
g 1. 0000 3.000 4. 000 5. 000 6. 000 7.000 8.000 9. 000 10. 000

* These have the same values as the inertia coefficients ke, ks, k..
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

TABLE IV

POTENTIAL COEFFICIENTS m',, m',, m’. FOR ELLIPSOIDS IN ROTATION

(For outer surface of a b ¢)

[Defined in eg. (76}]

bje
i !
T |2 3 + s \ 6 7 ‘ 8 9 ‘ 10 l ®
) \ | ‘
ms
‘ I ‘
0 ! : f
0 {05643 ;
0 26390 1045 !
0 6768 1135 1.499 |
0 6989 1,190 1. 596 1943 ‘
0 7125 1.225 1. 663 2. (42 2.380
U] 7211 1. 249 1. 705 2.113 2. 481 2,813
0 7270 1266 1.738 2,165 2,556 2.915 3,245 i
0 7315 - 1,278 1762 . 2208 2,615 2,995 3,348 561 |
0 i 7348 L288 | L7800 , 2.2 2. 660 3.058 3,430 3778 | 4103
0 Do l7se0 L3 | LEm | 240 2.917 3420 3,937 La | a0 ®
_ , SR DU I
m'y
0 i
~0.3 —0.5643 i
— 5819  —.8853 | —L.O45 |
- “1L14 | —1349 | -1.499
7581 1264 | —L1588 | —1.800  —1.943
8058  —1384 | —L780 | —2.052  —2243 | —2.380
Zi8402  —1476 | —1935 | —2.264  —2.504 | —2680 | —2.813
8650 —L58 | ~2.060 | —2445  —2732 | —2848 | -31l4 | —3.245
Tis8s7  —1607 | -2168 | —2.600  —2.931 | —3.188 | —3.388 | —3.547 | —3.675
29013 —16st | ~2257 | —2.734  —3.107 | —3.402 | —3.637 | —3.825 | —3.97 —4.103
10000 —2000 | —-3000 | —4000  —5000 | —8.000 |~7. | B0 | e -0 -
i ;
m's i
0. 3990 . I
L5819 0.1556 | 0 ‘ i
6888 | .2420 + 0.08332 |
738 L2060 1350 0.05193 | 0 ‘
- 8058 13350 1719 08705 | 0.0349 | 0
“8402 “3627 21081 1134 .06127 | 0.02560
8659 13836 S2181 1330 . 08081 04520 | 0.01951 | O
8857 “3008 ‘m i 09610 - 06058 0348 | 001527 | 0
So013 it Jat80 | l1808 > 1084 L7291 04721 0270 | 0.01238 0 ‘ ‘
1. 0000 5000 3333 1 2500 | 2000 16667 T14286 | .12500 LU 0.10000 | 0|
i i |
104397—30. 20
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REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TABLE V
POTENTIAL COEFFICIENTS m/,, m’,, m’. FOR ELLIPSOIDS IN ROTATION

(For all points inside of a b ¢)

[Defined in eq. (40)]

bfc

afe 1 2 i 3 } 4 5 6 7 ‘ 8 ‘ 9 ’ 10 w

ma=G
Oto = 0 l 0. 60000 ‘ 0. 80000 ‘ 0.88235 0. 92308 0. 94595 ‘ 0. 96000 0. 96923 0. 97561 | 0. 98020 100000

my=1{

1 0

2 —0. 60000

3 —. 80000

4 —. 88235

5 —.92308 !

6 —. 84505 Same for all values of bfc

7 —. 96000 |

8 —. 96923

9 —~. 97561

10 —. 98020

® -1 |

‘ — S

m'e=1

1 0

2 0.60000 | 0 |

3 .80000 | 0.38462 0 i |

14 88235 . .60000 0. 28000 0 : !

5 . 92308 L 72414 . 47059 02191 | 0 i

6 94595 . 80000 . 60000 38462 & 0.18033 0 |

7 . 96000 . 84906 . 68966 50769 | . 32432 0. 15294 0 |

8 . 96923 . 88235 75342 | 60000 . 43820 . 28000 0.1374 | 0

9 . 97561 . 90588 .80000 |  .67010 .52830 | .38462 . 24615 0.11724 0

10 98020 102308 | .834%6 72414 60000 | .47058 . .34228 .21951 . 0.10497 0

© 1.00000 ' 1.00000 1.00000 | 100000 , 100000 100000 | 1.00000 | 1.00000 100000 100000 ......_..

! |




FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

TABLE VI
INERTIA COEFFICIENTS! ¥/, k'3, &’ FOR ELLIPSOIDS IN ROTATION

(For outer surface of a b ¢)

[Defined in eq. (77)]

bie
‘ |
ge |1 2 ‘ 3 ‘ 4 5 | s } 7 8 ‘ 8 0 | =
| _ ' o _ R
Ko=0m'a
1 0 \ | ‘ ‘ ‘
2 0 ‘ 0.3386 | |
3 0 .3834 | 0.83%0 | :
4 0 [o.4061 . .0081 | 1323 i ;
5 0 Poolaid | L9519 | 1.408 L7 | ‘
6 0 Io.4275 1 .0803 | 1.468 1.885 , 2.251
7 1 0 4326 L9995 | 1505 Loso | 2347 2,701 ‘
8§ 10 CL4362 1 1013 ‘ 1. 533 LOw . 2418 2,799 3.145 ‘
9 I 0 © 14383 | 1,023 1,555 2035 | 2.473 2875 3. 245 , 585
0 1 0 L4409 | 1030 1.571 2. 064 2.516 2,935 3.32¢4 . 3.686 4,022
@ Lo I 4500 | 1.067 1. 654 2.215 ‘ 2.759 3.201 3.816 | 4.336 4.852 ‘ ®
: o I
Ky=Hm'"y
) \ |
2 0. 2394 0.3386 i ;
3 . 4655 7082 0.8359 ‘
4 L6078 9745 1.191 1.323 ‘
5 . 6998 1.167 1.466 1. 662 1.793 ‘
[ (5 1.309 1. 683 1. 941 2122 2,251 i
7 1 8066 1.417 1.857 2174 2,403 2.573 2.701 :
8 L8393 1. 501 1. 999 2,470 2,648 2.857 3.019 3. 145
9 ! lsedl Ls67 | 2115 2536 2. 860 3.110 3.305 3.460 | 3.585
10 1 L8834 1622 | 2213 | 2679 3,045 3.335 3. 565 3.749 | 3.900 4.022
@ 1. 0000 2000 | 3.000 | 4.000 5. 000 6. 000 7. 000 8000 9. 000 10. 000 ™
o ! | |
Ko=TIm’,
1 0 ‘
2 0. 2394 0 . |
3 L4655 0.05985 0 :
4 L6078 . 1452 0.02333 0
5 .6998 L2150 . 06303 0.01140 0
6 | .62 L2680 . .1031 . 03348 0. 00640 i
7| L8066 0791367 - 05758 . 01987 0. 00393 0
8 L8393 3385 | L1643 . 07982 L 03541 . 01268 0. 00259 0
9 | sear . 3622 | 1869 L 00341 . 05077 02330 . 00858 0.00179 0
10 L8834 L3810 1 L2054 L1164 . 06503 L 03431 . 01616 . 00608 0. 00130
® 1. 0000 - 5000 .3333 . 2500 ~ 20000 . 16667 . 14286 J12500 | Lnn 0. 10000 0
i

1 For translation kq, ks, ke are given in Table 111,
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TABLE VII
INERTIA COEFFICIENTS k', k', ¥, FOR ELLIPSOIDS IN ROTATION.

(Inner surface of a b ¢)

{Defined in eq. (77)]

blc
i ; i ; :
afe 1 2 3 4 ‘ 5 6 7 | 8 9 10 i e }
k'y=CGm's
0to = ] 0. 36000 ‘ 0. 64000 ' 0. 77854 } 0.85208 0. 89482 0.92160 | 0.93941 . 0.95181 ‘ 0. 96079 1. 00000
‘ \ \
k'y=Hm'y

L |

2 0. 36000

3 . 64000 ‘

4 . 77854

5 . 85208

6 .89482 | )Same for all values of b/c.

7 . 92160

B . 93941

'] . 95181 |
10 . 96079 !
@ 1. 00000 ‘

k.=1Im',s |
i

1 0 | 1 ‘ J ‘

2 0. 36000 1 ‘ i

3 . 64000 0. 14793 0

4 . 77854 . 36000 0. 07840 [ ! '

5 . 85208 . 52438 . 22145 0. 04818 0 1 i i

[ . 89482 . 64000 .3 . 14793 0. 03252 0 ! |

7 . 92160 . 72090 . 47563 . 25775 10518 0.02339 0 |

8 . 93941 . 77854 . 36764 I . 36000 19202 . 07840 0.01762 0 ;

') . 95181 . 82062 . 64000 . 44903 . 27910 . 14703 06059 0.01375 | 1] .
10 . 96079 . 85208 . 69699 . 52438 . 36000 . 22145 11718 .04818 | oo01102 ' o ;
® 1. 00000 1. 00000 1. 00000 [ 1 100000 | 100000 00000 ; 00000 ‘ 1. 00000 J ........ :

i i |
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

TABLE VIII
INERTIA VALUES FOR LIMITING FORMS OF ELLIPSOIDS a>b>c¢

INERTIA COEFFICIENTS FOR TRANSLATION AND ROTATION

* Per unit length of model.

a/b Shape ke ’ ke [ ke l k' 1 k.
11 |
c=0
1] I
1 Cireular disk 0 ® i © w ‘
1+ Elliptical di ] 0 @ ! © «© | 0
3 Long rectangle 0 @ i © ® :
8>c>0
| | )
- _¢_ _cte—agsinle 1 _aae—csinle I G -} SN 0
L Oblate spherold e!=1-cfal......| aae{e’*+1)—c sin~le c.ce—a sin-ie (2—e?)[2e3— (2—e?) (yo—Bo)]
FET T I \
S g’ ! )
@ ! Elliptical cylinder 1] cfb bfe e Bigel” ble cfb
l S -
cm=b
1 Bere. ..o oieieeaanes 123 1% | } 0 0 ;0
Sphere.....- N ETER gl Fe_ 2 |
I+ id e2=1—c¥a? Bl i S 0 __ tBemankt
Prolate spheroid e?=1—cYa e 2% ) T+e 2‘1_25, G=e2e= (= B—a)
08 ¢ T 1-e 0B e~ %1=e i
© Round eylinder.____.._._____ 1 ‘ 1 0 1 1
APPARENT MASSES AND MOMENTS OF INERTIA WHEN c¢=0
afb Shape kam kvm ) kem Ko ‘ kB I k.
[T - | ‘
b | Cireular diskeeecceeerernees 0 o Sor 1as 0
1+ intical di ? 4 . dxp _abl(a?—bl) 4xp __aibi(ai—b}) |
Elliptical disk................ 0 ! 3"P"bzl‘E 15 (@ai—6) E—BK| 15 (@'—2)E+0K,
@ Long rectangle a=w______... : 0 wpbt* | fwpbt* wpb?* '
I
3 3 ;— 3 31—e 1+e
1 v—B.= —1+;,—Ei1/1—¢’ sln-te. Bo—ao=—2+e—,—§ a log.l_‘-
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TABLE IX
LIFT, DRAG, AND MOMENT ON ENDLESS ELLIPTIC CYLINDER

(Width 8 inches, thickness 2 inches, air speed 40 miles per hour]

i Moment about long
Lift Drag axis pound foot per

i
0
Angle I foot ru
r’ulkat,- . - - —
ack «, Theoreti-
degrees  poynd per foot  Experi- cal
run mental = N=1.3392
sin 2a
-8 —~2.30 0. 160 -0.335 0. 3691
-6 —1.04 139 -. 254 —. 2784
-4 ' —1.42 122 —. 170 —. 1864
-3 -1.11 L1186 —-.127 —. 1400
-2 -7 L1 —.084 —. 0934
-1 —.40 . 108 -. 042 —~. (467
0 0 . 108 0 1]
+1 +.41 . 108 +. 044 +. 0467
1 , 085 0034
3 1.13 116 126 1400
4 L4 L123 171 1864
6 1.90 . 140 . 249 . 2784
+8 +2.16 .185 | +.325 +. 3691

. ‘gs tlhe test angles « were in part fractional, all urxeasurr;l;lrenisr in Table I;.arrrei;a;;d [rcr;x t:;xrerorigiua] grapns of lift, drag, and moment versus
a, in fig. 18,
TABLE X
LIFT, DRAG, AND MOMENT ON ENDLESS THIN FLAT PLATE

{Width 5 inches, air speed 40 miles per hour]

l ‘ } Moment about leng

i Lift Drag axis p;)und {oot
' er foot run
Angle P
of at- - s
é:cgl;e‘;é ' Theoreti-
| Pound per foot run Iélxe%et';l N;;')i.lﬁs&
i sin 2«
—8 ‘ —1,345 0. 190 —0.107 ~0.1538
—6 —. 980 Jd12 | =097 —. 1180
~5 —. 827 .0816 | —.083 —. 0984
—4 —. 614 L0596 | — 064 —. 0777
-3 —.471 . 0464 —. 050 —. 0583
-2 -.315 . 0360 —. 032 —. 0389
-1 —. 157 . 0324 —. 016 —. 0195
0 0 L0312 0 0
+1 -+. 185 L0328 | +.017 -+.0195
2 L311 L0360 1 033 . 0389
3 471 L0472 050 0583 |
4 639 . 0648 066 0777
5 831 . 0900 . 085 0984
] 1.018 J124 . 098 1160
8 1,348 . 208 107 1538
10 1,538 . 291 . 084 +. 1909
12 1. 594 . 360 . 074
14 1.582 422 059
18 1. 581 . 480 055
+18 . +1.530 ‘ . 542 +. 046
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TABLE XI
LIFT, DRAG, AND MOMENT ON THIN ELLIPTIC WING

[Length 30 inches, width 5 inches, air speed 40 miles per hour}

‘ ! Lift

Moment about long

‘ Drag axis, pound foot
| Angle . S,
! of at-
‘ ‘tiack a E . Theogeti-
- degrees Xperi- ca.
Pounds mental | L=0.8063
8in 2a .
i
—8 | —2.415 | 0.428 | —0.173 | —0.2471
‘ Z6 | —183s | .25 . —.154 | —.1863
| ~4 | —1.186 | .160 — 100 —.1247
i3 —.886 | .138 — 082 —. 0937
Z2 ! leer | 116 | —0s3 | —.0e2s |
-1 —. 204 .106 ~.031 —.0313 |
0 +4.008 | .103 0 0 ‘
+1 2303 | .106 +.030 | +.0318
2 1590 | .18 058 0625
3 800 | 138 084 0037
4 1195 | .168 m L1247
6 1.861 .285 1156 -1863
8 2474 | .422 1185 7l
10 2865 | .567 134 . 3066
12 2.958 | .606 1109
14 2.892 | .708 - 004 i
| 18 2,859 | .807 . 086
2.769 | .974 097
+20 4272 | 1.065 +.005
TABLE XII

MOMENT ON PROLATE SPHEROID!

{Length 24 inches, diameter 6 inches, through-air speed 40 feet per second)

%ng]e ‘ h{;”bl;rfd Fo

i Moment about minor axis, pound foot |

und by pressure

f at- integration
tack a, ! ance
degrees — e ———
Recti- ' Recti- ‘ Curvi-
linear | linear linear
} motjon ‘ motion  motion
: |
D20 | —0.179 ‘ —0.207 | —0.157
-10 —. 106 —. 122 -~.078
—4 —.o45 | — 052 —.018
0 0 0 +. 021
+10 +.106 | 4122 .127
‘ Fo20r . 4T

|20 | 47

Theoreti-
cal

N=0.388 |
sin 2«

-0.249
—.133
--. 054

0
+.133
+. .49

1 Data taken from Relerence 3.
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